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P H Y S I C S

An experimental test of the geodesic rule proposition 
for the noncyclic geometric phase
Zhifan Zhou1, Yair Margalit1,2, Samuel Moukouri1, Yigal Meir1*, Ron Folman1

The geometric phase due to the evolution of the Hamiltonian is a central concept in quantum physics and may 
become advantageous for quantum technology. In noncyclic evolutions, a proposition relates the geometric 
phase to the area bounded by the phase-space trajectory and the shortest geodesic connecting its end points. The 
experimental demonstration of this geodesic rule proposition in different systems is of great interest, especially 
due to the potential use in quantum technology. Here, we report a previously unshown experimental confirmation 
of the geodesic rule for a noncyclic geometric phase by means of a spatial SU(2) matter-wave interferometer, 
demonstrating, with high precision, the predicted phase sign change and  jumps. We show the connection 
between our results and the Pancharatnam phase. Last, we point out that the geodesic rule may be applied to 
obtain the red shift in general relativity, enabling a new quantum tool to measure gravity.

INTRODUCTION
The geometric phase (GP), the phase acquired over the course of an 
evolution of the Hamiltonian in parameter space, is a central con-
cept in classical and quantum physics (1–9). Originally, the GP was 
defined only for an evolution of a system in a closed trajectory in 
phase space, but later, it was generalized to noncyclic evolutions 
(7, 10). For the case of a two-level system, where the evolution of the 
system can be described by a trajectory on the Bloch or Poincaré 
spheres, it has been proposed (7, 10) that, using a natural definition 
of the phase (1), the GP is given by half the area enclosed by the 
trajectory and the geodesic connecting the initial and final points. A 
marked outcome of the proposed geodesic rule is that this noncyclic 
phase changes sign when the trajectory moves from the upper to the 
lower hemisphere, resulting in a -phase jump when the trajectory 
is half the circumference of a circle (7, 10). While the GP for a closed 
trajectory has been measured experimentally in several physical sys-
tems in a fairly straightforward manner (11–15), the experimental 
verification of the GP during noncyclic evolution requires a more 
convoluted approach. This is so because the cyclic GP can be readily 
measured as the probed state is returned to its initial position in 
parameter space, where it can be compared with a reference state to 
measure the relative phase, while for noncyclic geometric evolutions, 
where the probed state is not returned to its initial position, one needs 
to project the final state onto the initial state. Using an ultracold atom 
spatial interferometer, we test the geodesic rule, including the pre-
dicted SU(2) phase sign change and  jumps.

Berry’s original work (2) addressed a quantum system undergoing 
a cyclic evolution under the action of a time-dependent Hamiltonian. 
When the Hamiltonian returns to its initial value, the quantum state 
acquires an extra GP in addition to the dynamical phase. This con-
cept has been generalized (7) to a noncyclic evolution of the system, 
where the parameters of the Hamiltonian do not return to their initial 
values. In addition to the fundamental interest in better under-
standing the noncyclic behavior, it may also prove to be technolog-

ically advantageous. For example, as the system does not need to 
return to its original state, geometric operations may be done faster, 
e.g., geometric quantum gates (16–18). Quantum optimal control of 
the evolution may also benefit (19, 20). In addition, metrology may 
be made more sensitive due to the expected phase sign change and 
phase jumps, e.g., in measuring a gravitational potential (21).

The geometric interpretation of this noncyclic GP takes an illu-
minative form for a two-level system whose state can be described 
by two angles,    =  (  cos   _ 2   ∣ 2⟩+ exp (i ) sin   _ 2   ∣ 1⟩ )    , which define a 
point on the Poincaré or Bloch spheres. The propagation of a state 
under a noncyclic evolution of the Hamiltonian, from A to B, 
characterized by {A, A} and {B, B}, respectively, is represented by 
a curve connecting points A and B on the sphere. Using a natural 
definition of the phase (1), where the relative phase between two 
arbitrary states is zero when the visibility of their interference pat-
tern is maximal, the GP associated with this propagation is deter-
mined by the geodesic rule: it is given by half the area on the sphere 
bordered by the evolution curve and the shortest geodesic connect-
ing A and B (22). An illustration of the geodesic rule on the Bloch 
sphere is shown in Fig. 1, where A evolves toward B, along the lati-
tude of fixed A = B = , and  changes from A to B = A +  (the 
curve   C  AB   ). The area corresponding to the GP, blue shaded in the 
figure, is enclosed by   C  AB    and by the geodesic curve   G  AB    joining 
points A and B. If   C  AB    is on the northern hemisphere,   G  AB    is above 
(toward the north pole)   C  AB   . But if   C  AB    is on the southern hemi-
sphere,   G  AB    is below   C  AB   , leading to a sign change of the GP as   C  AB    
crosses the equator.

Since the introduction of the geodesic rule, several studies have 
verified it experimentally with light (23, 24), neutron (25, 26), and 
atom (27, 28) interferometers [see also (29) and (30) for relevant 
debates and (31) for other interpretations]. In this work, we propose 
and realize a matter-wave experimental study using cold-atom spatial 
interferometry (32, 33). The uniqueness of our approach includes 
(i) the use of a spatial interference pattern to determine the phase in 
a single experimental run (no need to scan any parameter to obtain 
the phase), (ii) the use of a common phase reference for both hemi-
spheres and a scan of  enabling to verify the  phase jump and the 
sign change, and (iii) obtaining the relative phase by allowing A and 
B to expand in free flight and overlap, different from previous atom- 
interferometry studies that required, for obtaining interference, an 
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Fig. 1. Illustration of the geodesic rule and the experimental sequence. (A) An illustration of the geodesic rule (7, 10) on the Bloch sphere representing the two- dimensional 
space defined by our physical two-level system. The green and red arrows represent the internal states A and B of the two spatially separated wave packets, A and B (see Eq. 1). 
The rotation angle from the north pole  and the rotation  along the latitude (continuous purple) represent the SU(2) operations applied in the experiment, where the former 
requires an RF pulse, while the latter requires a magnetic gradient. When  = /2, the arrows lie on the equator of the Bloch sphere (A0 and B0). The dashed purple curve is the 
geodesic joining points A (A′) and B (B′). The GP is equal to one-half of the blue area enclosed by the latitude and geodesic. The area’s orientation (indicated by the arrows) is deter-
mined by the geodesic rule. It is negative, counterclockwise (northern hemisphere) and positive, clockwise (southern hemisphere). (B) Experimental sequence (not to scale) of the 
longitudinal interferometer. The experiment is performed in free fall. The final interference pattern (from which the total phase is obtained) develops after time-of-flight (TOF) free 
evolution, in which the two wave packets expand and overlap. The pattern is then recorded by a CCD camera. (C) Evolution of the states during the sequence. After the preparation 
of two coherent wave packets at different locations, an RF pulse of duration TR is applied to manipulate , and a magnetic field gradient of duration TG is applied to manipulate .
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Fig. 2. Population transfer and its connection to the  phase jump. (A) Population transfer to state ∣1⟩ versus the duration of the RF radiation pulse TR, for which 20 s 
corresponds to total population transfer ( =  in Fig. 1). With this independent measurement, we determine  for our SU(2) operations. (B) Averaged CCD image of inter-
ference when the Bloch vectors are all in the northern hemisphere [NH data points specified in (A)], with  ≃ . The high visibility indicates the existence of phase rigidity, 
namely, that the phase is independent of . The phase returned by the fit is 1.13 ±0.02 rad relative to a fixed reference point, and the visibility is 0.55 ± 0.01 (see Methods 
for the definition). (C) Averaged picture of the second half of the data, in which the Bloch vectors are all pointing in the southern hemisphere [SH data points specified in 
(A)], with  ≃ . A phase jump is clearly visible. The phase is 4.34 ± 0.03 rad relative to the fixed reference point, which is common to both pictures, and the visibility is 
0.52 ± 0.01. The phase difference between (B) and (C) is thus 3.21 ± 0.05 rad, close to . The data included in these images (in total, about 330 consecutive experimental 
shots without post-selection or post-correction) are presented in Fig. 3B. (D) Averaged picture of all the data for  ≃ . The visibility is 0.03 ± 0.01. The low visibility shows 
that the phase jump has a value close to . Single-shot data are presented in Fig. 3B, and single-shot images are presented in Fig. 6.
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additional manipulation of the SU(2) parameters  and . As a 
result of our novel technique, we are able to test and confirm the 
geodesic rule for noncyclic evolutions in a new way, including the 
predicted sign change and the predicted SU(2) phase jumps.

EXPERIMENT
Our full experimental procedure is detailed elsewhere (34–36) as 
well as in Methods and the Supplementary Materials. The relevant 
part for the determination of the GP is sketched in Fig. 1. The 87Rb 
atom can be in either state ∣1⟩ ≡ ∣ F = 2, mF = 1⟩ or ∣2⟩ ≡ ∣ F = 2, 
mF = 2⟩, where F is the total angular momentum and mF is the pro-
jection. We start by preparing two-atom wave packets at different 
positions, both in an internal state ∣2⟩. We first apply a uniform 
radio-frequency (RF) pulse, of time duration TR, which transfers 
population from the ∣2⟩ state to ∣1⟩, shifting both wave packets 
from the north pole of the Bloch sphere to a point whose latitude  
depends on TR (Fig. 1A). We then apply a magnetic field gradient 
pulse of duration TG, which results, due to the different magnetic 
moments of states ∣1⟩ and ∣2⟩, in a phase difference between these 
states, rotating both superpositions along a constant latitude on 
the Bloch sphere. Because of the difference in positions, each wave 
packet experiences a different magnetic field and thus will rotate by 
a different angle, ending up at points A and B in Fig. 1A. The two 
states, after the application of both TR and TG, can thus be written as

   
    A   =    A  (r )  (  cos    ─ 2   ∣ 2〉 + sin    ─ 2   ∣ 1〉 )   

     
    B   =    B  (r )  (  cos    ─ 2   ∣ 2〉 + exp (i ) sin    ─ 2   ∣ 1〉 )   

   (1)

where  is proportional to TR, and  to TG. A(r) and B(r) are the 
spatial components of the respective states. There may also be an 
additional global phase, identical for both A and B, which plays 
no role in the interference between A and B. To measure this 
interference, we allow enough time of flight for the two wave pack-
ets to free fall, expand, and overlap, before taking a picture using 
a charge-coupled device (CCD) camera.

RESULTS
Figure 2 depicts the averaged interference patterns (raw data CCD 
images) averaged over all values of  in the upper (B) or lower (C) 
hemispheres, for TG = 17 s ( ≃ ). The value of  was independently 
deduced from the relative populations of states ∣1⟩ and ∣2⟩, which 
are given by   cos   2 ( / 2)  and   sin   2 ( / 2) , respectively (Figs. 2A and 5). 
The high visibility in both images indicates the existence of “phase 
rigidity,” namely, that the measured phase is independent of  in 
each hemisphere. Moreover, the two datasets have a phase differ-
ence of , which can also be deduced from the vanishing visibility in 
Fig. 2D, where the two datasets in (B) and (C) are joined. Evidently, 
there is a sharp jump in the phase of the interference pattern as  
crosses the equator.

According to Eq. 1, the interference phase , for general  and 
, is given by

   = arg  〈    A   |      B   〉 =    0   + arctan  {      sin   2 ( / 2 ) sin   ───────────────   
 cos   2 ( / 2 ) +  sin   2 ( / 2 ) cos 

   }     

(2)
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Fig. 3. The phase of the interference pattern: Phase jump and rigidity. (A to D) Total phase  as a function of TR () for TG is equal to 6, 17, 32, and 40 s. Each data 
point is an average of six experimental cycles (errors are SEM). The dashed lines are a fit to Eq. 2, which allows us to determine  for our SU(2) operations. The fit returns 
the values  = 2.24 (A),  = 3.14 (B),  = 5.31 ≡ 2 − 0.97 (C), and  = 6.23 ≡ 2 − 0.05 (D) radians, respectively (manifested in the graph as the peak-to-valley amplitude 
if we consider the periodicity of 2 when defining a phase). The fit also returns a baseline phase 0. Last, the phase rigidity and the phase jump observed in Fig. 2 are 
clearly visible in (B). (E) Linear mapping from TG to . As seen in the graph (TG = 0), we have a fixed background gradient equivalent to  = 1.35.
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where 0 = arg ⟨A(r) ∣ B(r)⟩ is the phase associated with the evo-
lution of the external degrees of freedom of the system (see Methods). 
Figure 3 depicts the interference phase, deduced from the raw data, 
as a function of TR for different values of TG. The dashed lines in 
this figure are a fit to Eq. 2, with the fitting parameters 0 (an overall 
vertical shift) and . The excellent fit to the data allows us to deter-
mine with high precision the values of  (Fig. 3E).

The total phase (interference phase)  is a sum of two contribu-
tions, the GP G and the dynamical phase D. While both  and D 
are gauge dependent, G =  − D is gauge independent (37, 38). 
Substituting for the dynamical phase (6, 10, 37, 38), we obtain (see 
Methods)

      G   = arctan  {      sin   2 ( / 2 ) sin   ───────────────   
 cos   2 ( / 2 ) +  sin   2 ( / 2 ) cos 

   }   −    ─ 2  (1 − cos )    

  (3)

where the gauge-dependent phase 0 has dropped out.
Figure 4 displays , D, and the resulting G, for two values of 

, where the first term on the right-hand-side of Eq. 3 is given by 
, the phase of the interference pattern, while the second is evaluated 
for the experimentally determined values of  and . The dashed 
lines in Fig. 4 (B and D) correspond to the geodesic rule—half the 
area between the geodesic and the trajectory, with the correct sign. 
A very good agreement between data and the theoretical predictions 
is observed. This constitutes a complete verification of the GP asso-

ciated with noncyclic evolution in an SU(2) system and accurately 
confirms the theoretical predictions, including a precise observation 
of the geodesic rule, the phase sign change, and the  phase jump.

DISCUSSION
Last, we make a fundamental connection between our experiment 
and the Pancharatnam phase (1). We begin by noting that in the 
case 0 = 0, we have arg ⟨A ∣ 2⟩ = 0 and arg ⟨2 ∣ B⟩ = 0, and then 
the states A, ∣2⟩, and B fulfill the Pancharatnam consecutive in-phase 
criterion (1, 22). It then follows that arg ⟨A ∣ B⟩ is given by half the area  
of the spherical triangle defined by these three states on the Bloch 
sphere, namely, the area in between three geodesic lines. The area  of 
the spherical triangle defined by the two arcs joining the north pole and 
points A and B is given by the relation  tan ( / 2 ) =  tan   2  ( / 2 ) sin ( ) / [1 +  
tan   2  ( / 2 ) cos ] , which is identical to Eq. 2 with  = /2 (for 0 = 0). 
This geometric interpretation of  yields an explanation of the observed 
phase rigidity for  = : When the two points are in the northern 
hemisphere, the geodesic between the two points goes through the 
north pole. The enclosed area is zero; hence,  = 0. When the two points 
are in the southern hemisphere, the geodesic goes through the south 
pole, with an area of 2, resulting in a jump of  in the value of  (Fig. 2). 
The geometric interpretation of our experiment is now evident, namely, 
what is measured in the experiment (the interference-pattern phase) 
is the Pancharatnam phase P. The difference between the areas as-
sociated with P and D gives the light blue area in Fig. 1, associated 
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with G. This now naturally explains both the sign change of G as the 
latitude crosses the equator, as well as the phase jump for  =  (Fig. 4).

OUTLOOK
As an outlook, we consider a situation in which the two wave pack-
ets are viewed as a split wave packet of a single clock, where  = /2 

for a perfect two-level clock (35, 36). When we place the two wave 
packets along a vertical line parallel to gravity at different distances 
from earth, they are exposed to different proper times. In the exper-
iment described in this paper, the relative phase  = (E1 − E2) × 
t/ħ between the wave packets is determined by a magnetic gradient, 
which changes the energy splitting E1 − E2 between states ∣1⟩ and 
∣2⟩ [i.e., (E1 − E2) is the difference of energy splitting between two 
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wave packets A and B], while time (from the moment the two 
wave packets were allowed to free fall) is the same for both wave 
packets. However, the same GP situation occurs when the magnetic 
gradient is zero and consequently the splitting E1 − E2 is identical 
for the two wave packets, but time elapsed is different for the two 
wave packets due to the different red shift (with time difference t). 
In this case, we have  = (E1 − E2) × t/ħ, and the same theory 
presented in this paper may be used to analyze via the GP an exper-
imental situation on the interface between quantum mechanics and 
general relativity. Moreover, by scanning  around /2 (i.e., change 
the relative populations of the ∣1⟩ and ∣2⟩ states from below to above 
half), one should observe a sign change that may allow the construc-
tion of a novel type of gravitational sensor. A main limitation that 
will have to be examined is the sharpness of the slope. Even when 
working at the best point ( = ; see Fig. 4B), the practical slope 
will never be the theoretical infinite slope, as the visibility at this 
exact point is zero (as may be seen from the large error bar). How-
ever, the visibility quickly recovers and numerical and experimental 
studies are needed to reveal the ultimate realizable slope. An addi-
tional limitation has to do with the fact that the sharp slope appears 
when  = , so when dealing with proper time differences that give 
rise to a substantially different , a bias would have to be introduced 
to keep the system at this optimal point, and this bias may introduce 
its own errors.

METHODS
Detailed experimental scheme
The experiment was realized in an atom chip setup (39). We present 
the detailed experimental scheme in fig. S1, which includes the 
two-level system preparation. We first prepared a Bose-Einstein 
condensate (BEC) of about 104 87Rb atoms in the state ∣2⟩ ≡ ∣ F = 2, 
mF = 2⟩ in a magnetic trap located 90 m below the chip surface. 
After the BEC atoms were released from the trap, the entire experi-
mental sequence took place in the presence of a homogeneous mag-
netic bias field of 36.7 G in the y direction (z is the direction of 
gravity), which created an effective two-level system (with ∣1⟩ ≡ ∣ 
F = 2, mF = 1⟩) via the nonlinear Zeeman effect with Eij = E21 ≈ h × 
25 MHz (where i and j are the mF numbers, all in the F = 2 mani-
fold), and E21 − E10 ≈ h × 180 kHz. We then applied an RF pulse 
(duration TR1, where typically 10 s gives rise to a  = /2 rotation) 
to prepare a spin superposition  (∣ 1⟩+ ∣ 2⟩) /  √ 

_
 2    between the ∣2⟩ and 

∣1⟩ states. A magnetic gradient pulse ∂B/∂z of duration TG1 = 4 s, 
generated by currents in the atom chip wires, was applied to create 
the Stern-Gerlach splitting, in which the different spins are exposed 
to differential forces. To enable interference between the two wave 
packets (∣2⟩ and ∣1⟩ are orthogonal), a second /2 pulse (TR2) was 
applied to mix the spins. To stop the relative velocity of the wave 
packets, a second magnetic gradient pulse (TG2) was applied to yield 
differential forces for the same-spin states at different locations. A 
spatial superposition of two wave packets in state ∣2⟩ now exists 
(separated along the z axis, with zero relative velocity). Note that 
during TG2, the ∣1⟩ state from the two wave packets was pushed 
outside the experimental zone. The control of  introduced in Fig. 1A 
is realized by a third RF pulse of duration TR3 (TR in the main text). 
The relative rotation between the two wave packets  may be 
changed by applying a third magnetic field gradient of duration 
TG3 (TG in the main text). The wave packets were then allowed to 
expand (during time of flight of ∼10 ms, much larger than the re-

ciprocal of the trap frequency ∼500 Hz) and overlap to form the 
interference pattern. An image based on the absorption imaging was 
taken in the end.

The magnetic gradient pulses were generated by three parallel 
gold wires located on the chip surface with a length of 10 mm, a 
width of 40 m, and a thickness of 2 m. The chip wire current was 
driven using a simple 12.5-V battery and modulated using a home-
made current shutter. The three parallel gold wires were separated 
by 100 m (center to center), and the same current runs through 
them in alternating directions. The benefit of using this three-wire 
configuration instead of a single gold wire is that a two-dimensional 
quadrupole field was created at z = 100 m below the atom chip. As 
the magnetic instability is proportional to the field strength, and as 
the main instability originates in the gradient pulses (the bias fields 
from external coils are very stable), positioning the atoms near 
the middle (zero) of the quadrupole field significantly reduces 
the magnetic noise while maintaining the strength of the magnetic 
gradients.

Determination of the population transfer and the value of 
In Fig. 5, we explained how the values of  are obtained from the 
measurement of population transfer when we apply TR3 (TR in the 
main text). Stern-Gerlach splitting was used to separate the mF = 1 and 
mF = 2 parts, and absorption imaging was performed to evaluate the 
atom number. See the details in the figure caption.

The CCD image of the interference pattern while  is scanned
In Fig. 6, we showed the raw data of the interference patterns, which 
are displayed in Fig. 2 (averaged over numerous values of ) and in 
Fig. 3B (where the phase for different values of  is presented), when 
TG3 (TG in the main text) equals 17 s ( ≃ ). The whole scan-
ning range of TR is 40 s, corresponding to one full cycle (2) of the 
Rabi oscillation. The phase of the interference pattern was found to 
be rigid when the Bloch vector is located in the northern hemisphere 
or in the southern hemisphere, with a  phase jump in between.

The interference pattern was fitted with the function Aexp   
[   −   (z −  z  CM  )   2  _ 

 2 z  2 
   ]       {  1 + vsin [    2π _ λ   (  z −  z  ref   )   + Φ ]   }   + c  , where A is a constant 

related the optical density in the system, zCM is the center-of-mass 
(CM) position of the combined wave packet at the time of imaging, 
z is the Gaussian width of the combined wave packet obtained after 
time of flight,   =   ht _ md   is the fringe periodicity, v is the visibility, zref 
is a fixed reference point, c is the background optical density from 
the absorption imaging, and  is the phase of the interference pat-
tern that appears in Eq. 2. In the fringe periodicity   =   ht _ md  , h is the 
Planck constant, t is the duration of time of flight, m is the mass of 
87Rb atom, and d is the distance between the two wave packets. In 
Fig. 3, we measure the dependence of  on  (TR) for a fixed TG and 
then fit the data to Eq. 2, returning values for both 0 and .

Geometrical phases for different values of ∆
Here, we describe the approach used to derive the expression of G 
in Eq. 3. Mukunda and Simon (37) developed a general formalism 
called the quantum kinematic approach for the GP in quantum 
systems.

In the formalism of Mukunda and Simon, a one-parameter smooth 
curve was defined from a vector  belonging to a Hilbert space  
ℋ, C = {(s ) ∈  N  0  , s ∈ [ s  1  ,  s  2   ] } .   N  0    is the subset of unit vectors of  
ℋ . Note that the curve  C  is not necessarily closed. The only require-
ments of the theory are the smoothness of  C , i.e., (s) should be 
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differentiable, and the non-orthogonality of the initial and final 
states. The GP is given by

     G   =  −    D    (4)

where  is the total phase. D is the dynamical phase arising from 
the energy dependence on s during the evolution. This general for-
malism naturally reduces to the evolution under the time-dependent 
Schrödinger equation if the parameter s is time. The curve  C  is the 
trajectory of the wave function during the propagation time 0 ≤ t ≤ T.

The total phase  during an evolution along  C  is given by

   = arg 〈( s  1   ) ∣ ( s  2   ) 〉  (5)

Taking   (s ) =  (  cos   _ 2   ∣ 2⟩ +  exp (is ) sin   _ 2   ∣ 1⟩ )     and {s1, s2} = [0,1], 
we found for the total phase

    = arctan  {      sin   2 ( / 2 ) sin   ───────────────   
 cos   2 ( / 2 ) +  sin   2 ( / 2 ) cos 

   }     (6)

where we should add to  the phase 0 arising from the evolution of 
the spatial part. This yields Eq. 2.

The dynamical phase D can be calculated from the integral of 
the evolution curve  C  (7)

     D   = Im ∫ s  1    
 s  2  

   〈(s ) ∣   ̇  (s ) 〉ds  (7)

We find

     D   =    ─ 2  (1 − cos  )  (8)

to which phase 0 should also be added. Subtracting D from  yields 
the expression for G of Eq. 3. G is more suitable to use for analysis 
because gauge-dependent phases in  and D mutually cancel.

In fig. S2, we presented the detailed theoretical behavior of G 
(Eq. 3) as a function of  and . The characteristics of G are the 
singularity at  =  and  = (n + 1/2) (where n is an integer), and 
the change of sign when  goes across these values. This result was 
originally obtained from (10) (see figure 4 in this reference).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/9/eaay8345/DC1
Fig. S1. Detailed scheme of the spatial SU(2) interferometer.
Fig. S2. Theoretical curves of the GP G versus  for different values of .
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